# Chapter 2

Limits and Continuity

# 2.1

### Rates of Change and Tangents to Curves

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

|                                        | The speeds over short time intervals over short time intervals over short time intervals over speed: $\frac{\Delta y}{\Delta t} = \frac{16(t_0 + h)}{h}$ |                                                                       |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Length of<br>time interval<br><i>h</i> | Average speed over<br>interval of length $h$<br>starting at $t_0 = 1$                                                                                    | Average speed over<br>interval of length $h$<br>starting at $t_0 = 2$ |
| 1                                      | 48                                                                                                                                                       | 80                                                                    |
| 0.1                                    | 33.6                                                                                                                                                     | 65.6                                                                  |
| 0.01                                   | 32.16                                                                                                                                                    | 64.16                                                                 |
| 0.001                                  | 32.016                                                                                                                                                   | 64.016                                                                |
| 0.0001                                 | 32.0016                                                                                                                                                  | 64.0016                                                               |

**DEFINITION** The average rate of change of y = f(x) with respect to x over the interval  $[x_1, x_2]$  is

$$\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x_1 + h) - f(x_1)}{h}, \qquad h \neq 0.$$



**FIGURE 2.1** A secant to the graph y = f(x). Its slope is  $\Delta y / \Delta x$ , the average rate of change of f over the interval  $[x_1, x_2]$ .



**FIGURE 2.2** L is tangent to the circle at P if it passes through P perpendicular to radius OP.



**FIGURE 2.3** The tangent to the curve at *P* is the line through *P* whose slope is the limit of the secant slopes as  $Q \rightarrow P$  from either side.



**FIGURE 2.4** Finding the slope of the parabola  $y = x^2$  at the point P(2, 4) as the limit of secant slopes (Example 3).



**FIGURE 2.5** Growth of a fruit fly population in a controlled experiment. The average rate of change over 22 days is the slope  $\Delta p/\Delta t$  of the secant line (Example 4).



**FIGURE 2.6** The positions and slopes of four secants through the point *P* on the fruit fly graph (Example 5).

## 2.2

### Limit of a Function and Limit Laws

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



FIGURE 2.7 The graph of f is identical with the line y = x + 1except at x = 1, where f is not defined (Example 1).

| <b>TABLE 2.2</b> The closer x gets to 1, the closer $f(x) = (x^2 - 1)/(x - 1)$ seems to get to 2 |                                                         |  |  |  |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|--|
| Values of x below and above 1                                                                    | $f(x) = \frac{x^2 - 1}{x - 1} = x + 1, \qquad x \neq 1$ |  |  |  |
| 0.9                                                                                              | 1.9                                                     |  |  |  |
| 1.1                                                                                              | 2.1                                                     |  |  |  |
| 0.99                                                                                             | 1.99                                                    |  |  |  |
| 1.01                                                                                             | 2.01                                                    |  |  |  |
| 0.999                                                                                            | 1.999                                                   |  |  |  |
| 1.001                                                                                            | 2.001                                                   |  |  |  |
| 0.999999                                                                                         | 1.999999                                                |  |  |  |
| 1.000001                                                                                         | 2.000001                                                |  |  |  |



**FIGURE 2.8** The limits of f(x), g(x), and h(x) all equal 2 as x approaches 1. However, only h(x) has the same function value as its limit at x = 1 (Example 2).



Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



**FIGURE 2.10** None of these functions has a limit as *x* approaches 0 (Example 4).

Slide 2 - 16

**THEOREM 1—Limit Laws** If L, M, c, and k are real numbers and and  $\lim_{x \to c} g(x) = M$ , then  $\lim_{x \to c} f(x) = L$  $\lim_{x \to c} (f(x) + g(x)) = L + M$ **1.** Sum Rule:  $\lim_{x \to c} (f(x) - g(x)) = L - M$ **2.** Difference Rule:  $\lim_{x \to c} (k \cdot f(x)) = k \cdot L$ **3.** Constant Multiple Rule:  $\lim \left( f(x) \cdot g(x) \right) = L \cdot M$ **4.** Product Rule:  $x \rightarrow c$  $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}, \quad M \neq 0$ **5.** *Quotient Rule:*  $\lim [f(x)]^n = L^n$ , n a positive integer **6.** Power Rule:  $x \rightarrow c$  $\lim \sqrt[n]{f(x)} = \sqrt[n]{L} = L^{1/n}$ , *n* a positive integer 7. Root Rule:  $x \rightarrow c$ (If *n* is even, we assume that  $\lim f(x) = L > 0$ .)

#### **THEOREM 2—Limits of Polynomials** If $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$ , then $\lim_{x \to c} P(x) = P(c) = a_n c^n + a_{n-1} c^{n-1} + \dots + a_0.$

#### **THEOREM 3**—Limits of Rational Functions

If P(x) and Q(x) are polynomials and  $Q(c) \neq 0$ , then

$$\lim_{x \to c} \frac{P(x)}{Q(x)} = \frac{P(c)}{Q(c)}.$$

#### **Identifying Common Factors**

It can be shown that if Q(x) is a polynomial and Q(c) = 0, then (x - c) is a factor of Q(x). Thus, if the numerator and denominator of a rational function of x are both zero at x = c, they have (x - c) as a common factor.



**FIGURE 2.11** The graph of  $f(x) = (x^2 + x - 2)/(x^2 - x)$  in part (a) is the same as the graph of g(x) = (x + 2)/x in part (b) except at x = 1, where f is undefined. The functions have the same limit as  $x \rightarrow 1$  (Example 7).

| <b>TABLE 2.3</b> Computer values of $f(x) = \frac{\sqrt{x^2 + 100 - 10}}{x^2}$ near $x = 0$ |                           |  |  |  |
|---------------------------------------------------------------------------------------------|---------------------------|--|--|--|
| x                                                                                           | f(x)                      |  |  |  |
| ±1                                                                                          | 0.049876                  |  |  |  |
| $\pm 0.5$                                                                                   | 0.049969                  |  |  |  |
| $\pm 0.1$                                                                                   | 0.049999 approaches 0.05? |  |  |  |
| $\pm 0.01$                                                                                  | 0.050000                  |  |  |  |
| $\pm 0.0005$                                                                                | 0.080000                  |  |  |  |
| $\pm 0.0001$                                                                                | 0.000000                  |  |  |  |
| $\pm 0.00001$                                                                               | 0.000000 approaches 0?    |  |  |  |
| $\pm 0.000001$                                                                              | 0.000000                  |  |  |  |



**FIGURE 2.12** The graph of f is sandwiched between the graphs of g and h.

**THEOREM 4—The Sandwich Theorem** Suppose that  $g(x) \le f(x) \le h(x)$  for all x in some open interval containing c, except possibly at x = c itself. Suppose also that

$$\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L.$$

Then  $\lim_{x\to c} f(x) = L$ .



**FIGURE 2.13** Any function u(x) whose graph lies in the region between  $y = 1 + (x^2/2)$  and  $y = 1 - (x^2/4)$  has limit 1 as  $x \rightarrow 0$  (Example 10).





**FIGURE 2.14** The Sandwich Theorem confirms the limits in Example 11.

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

**THEOREM 5** If  $f(x) \le g(x)$  for all x in some open interval containing c, except possibly at x = c itself, and the limits of f and g both exist as x approaches c, then

$$\lim_{x \to c} f(x) \le \lim_{x \to c} g(x).$$

## 2.3

#### The Precise Definition of a Limit

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



**FIGURE 2.15** Keeping x within 1 unit of  $x_0 = 4$  will keep y within 2 units of  $y_0 = 7$  (Example 1).

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



**FIGURE 2.16** How should we define  $\delta > 0$  so that keeping *x* within the interval  $(x_0 - \delta, x_0 + \delta)$  will keep f(x) within the interval  $\left(L - \frac{1}{10}, L + \frac{1}{10}\right)$ ?

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

**DEFINITION** Let f(x) be defined on an open interval about  $x_0$ , except possibly at  $x_0$  itself. We say that the **limit of** f(x) as x approaches  $x_0$  is the **number** L, and write

$$\lim_{x \to x_0} f(x) = L,$$

if, for every number  $\epsilon > 0$ , there exists a corresponding number  $\delta > 0$  such that for all *x*,

$$0 < |x - x_0| < \delta \implies |f(x) - L| < \epsilon.$$



**FIGURE 2.17** The relation of  $\delta$  and  $\epsilon$  in the definition of limit.

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



**FIGURE 2.19** For the function f(x) = x, we find that  $0 < |x - x_0| < \delta$  will guarantee  $|f(x) - x_0| < \epsilon$  whenever  $\delta \le \epsilon$  (Example 3a).



**FIGURE 2.20** For the function f(x) = k, we find that  $|f(x) - k| < \epsilon$  for any positive  $\delta$  (Example 3b).



**FIGURE 2.21** An open interval of radius 3 about  $x_0 = 5$  will lie inside the open interval (2, 10).

How to Find Algebraically a  $\delta$  for a Given  $f, L, x_0$ , and  $\epsilon > 0$ The process of finding a  $\delta > 0$  such that for all x

 $0 < |x - x_0| < \delta \implies |f(x) - L| < \epsilon$ 

can be accomplished in two steps.

- **1.** Solve the inequality  $|f(x) L| < \epsilon$  to find an open interval (a, b) containing  $x_0$  on which the inequality holds for all  $x \neq x_0$ .
- 2. Find a value of  $\delta > 0$  that places the open interval  $(x_0 \delta, x_0 + \delta)$  centered at  $x_0$  inside the interval (a, b). The inequality  $|f(x) L| < \epsilon$  will hold for all  $x \neq x_0$  in this  $\delta$ -interval.





**FIGURE 2.23** An interval containing x = 2 so that the function in Example 5 satisfies  $|f(x) - 4| < \epsilon$ .

## 2.4

### **One-Sided** Limits

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



# **FIGURE 2.24** Different right-hand and left-hand limits at the origin.

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



**FIGURE 2.25** (a) Right-hand limit as x approaches c. (b) Left-hand limit as x approaches c.



**THEOREM 6** A function f(x) has a limit as x approaches c if and only if it has left-hand and right-hand limits there and these one-sided limits are equal:

$$\lim_{x \to c} f(x) = L \quad \Leftrightarrow \quad \lim_{x \to c^{-}} f(x) = L \quad \text{and} \quad \lim_{x \to c^{+}} f(x) = L.$$



# **FIGURE 2.27** Graph of the function in Example 2.



**FIGURE 2.28** Intervals associated with the definition of right-hand limit.

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

**DEFINITIONS** We say that f(x) has **right-hand limit** L at  $x_0$ , and write

$$\lim_{x \to x_0^+} f(x) = L \quad \text{(see Figure 2.28)}$$

if for every number  $\epsilon > 0$  there exists a corresponding number  $\delta > 0$  such that for all *x* 

$$x_0 < x < x_0 + \delta \implies |f(x) - L| < \epsilon.$$

We say that f has left-hand limit L at  $x_0$ , and write

$$\lim_{x \to x_0^-} f(x) = L \quad \text{(see Figure 2.29)}$$

if for every number  $\epsilon > 0$  there exists a corresponding number  $\delta > 0$  such that for all *x* 

$$x_0 - \delta < x < x_0 \implies |f(x) - L| < \epsilon.$$



**FIGURE 2.29** Intervals associated with the definition of left-hand limit.





**FIGURE 2.31** The function  $y = \sin(1/x)$  has neither a righthand nor a left-hand limit as x approaches zero (Example 4). The graph here omits values very near the y-axis.



**FIGURE 2.32** The graph of  $f(\theta) = (\sin \theta)/\theta$  suggests that the rightand left-hand limits as  $\theta$  approaches 0 are both 1.

#### **THEOREM 7**

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \qquad (\theta \text{ in radians}) \tag{1}$$



**FIGURE 2.33** The figure for the proof of Theorem 7. By definition,  $TA/OA = \tan \theta$ , but OA = 1, so  $TA = \tan \theta$ .

## 2.5

## Continuity

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



**FIGURE 2.34** Connecting plotted points by an unbroken curve from experimental data  $Q_1, Q_2, Q_3, \ldots$  for a falling object.



**FIGURE 2.35** The function is continuous on [0, 4] except at x = 1, x = 2, and x = 4 (Example 1).



**FIGURE 2.36** Continuity at points *a*, *b*, and *c*.

#### DEFINITION

*Interior point*: A function y = f(x) is **continuous at an interior point** c of its domain if

 $\lim_{x \to c} f(x) = f(c).$ 

*Endpoint*: A function y = f(x) is continuous at a left endpoint a or is continuous at a right endpoint b of its domain if

 $\lim_{x \to a^+} f(x) = f(a) \quad \text{or} \quad \lim_{x \to b^-} f(x) = f(b), \text{ respectively.}$ 



**FIGURE 2.37** A function that is continuous at every domain point (Example 2).



**FIGURE 2.38** A function that has a jump discontinuity at the origin (Example 3).

#### **Continuity Test**

A function f(x) is continuous at an interior point x = c of its domain if and only if it meets the following three conditions.

- 1. f(c) exists (c lies in the domain of f).
- 2.  $\lim_{x\to c} f(x)$  exists (*f* has a limit as  $x \to c$ ).
- 3.  $\lim_{x\to c} f(x) = f(c)$  (the limit equals the function value).



FIGURE 2.39 The greatest integer function is continuous at every noninteger point. It is right-continuous, but not left-continuous, at every integer point (Example 4).



**FIGURE 2.40** The function in (a) is continuous at x = 0; the functions in (b) through (f) are not.

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



**FIGURE 2.41** The function y = 1/x is continuous at every value of x except x = 0. It has a point of discontinuity at x = 0 (Example 5).

**THEOREM 8—Properties of Continuous Functions** If the functions f and g are continuous at x = c, then the following combinations are continuous at x = c.

- f + g**1.** Sums:
- **2.** *Differences:*
- **4.** Products:
- **5.** *Quotients:*
- **6.** *Powers*:
- 7. Roots:

- f g**3.** Constant multiples:  $k \cdot f$ , for any number k  $f \cdot g$ 
  - f/g, provided  $g(c) \neq 0$
  - $f^n$ , *n* a positive integer
  - $\sqrt[n]{f}$  provided it is defined on an open interval containing c, where n is a positive integer



**FIGURE 2.42** Composites of continuous functions are continuous.

**THEOREM 9—Composite of Continuous Functions** If f is continuous at c and g is continuous at f(c), then the composite  $g \circ f$  is continuous at c.



**FIGURE 2.43** The graph suggests that  $y = |(x \sin x)/(x^2 + 2)|$  is continuous (Example 8d).

**THEOREM 10—Limits of Continuous Functions** If g is continuous at the point b and  $\lim_{x\to c} f(x) = b$ , then

$$\lim_{x\to c} g(f(x)) = g(b) = g(\lim_{x\to c} f(x)).$$



**FIGURE 2.44** The graph (a) of  $f(x) = (\sin x)/x$  for  $-\pi/2 \le x \le \pi/2$  does not include the point (0, 1) because the function is not defined at x = 0. (b) We can remove the discontinuity from the graph by defining the new function F(x) with F(0) = 1 and F(x) = f(x) everywhere else. Note that  $F(0) = \lim_{x \to 0} f(x)$ .



**FIGURE 2.45** (a) The graph of f(x) and (b) the graph of its continuous extension F(x) (Example 10).

**THEOREM 11—The Intermediate Value Theorem for Continuous Functions** If f is a continuous function on a closed interval [a, b], and if  $y_0$  is any value between f(a) and f(b), then  $y_0 = f(c)$  for some c in [a, b].











**FIGURE 2.47** Zooming in on a zero of the function  $f(x) = x^3 - x - 1$ . The zero is near x = 1.3247 (Example 11).

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



## 2.6

### Limits Involving Infinity; Asymptotes of Graphs

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



approaches 0 as  $x \to \infty$  or  $x \to -\infty$ .

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

### **DEFINITIONS**

**1.** We say that f(x) has the limit *L* as *x* approaches infinity and write

$$\lim_{x \to \infty} f(x) = L$$

if, for every number  $\epsilon > 0$ , there exists a corresponding number M such that for all x

$$x > M \quad \Rightarrow \quad |f(x) - L| < \epsilon.$$

2. We say that f(x) has the limit L as x approaches minus infinity and write

$$\lim_{x \to -\infty} f(x) = L$$

if, for every number  $\epsilon > 0$ , there exists a corresponding number N such that for all x

$$x < N \implies |f(x) - L| < \epsilon.$$



**FIGURE 2.50** The geometry behind the argument in Example 1.

**THEOREM 12** All the limit laws in Theorem 1 are true when we replace  $\lim_{x\to c}$  by  $\lim_{x\to\infty}$  or  $\lim_{x\to-\infty}$ . That is, the variable *x* may approach a finite number *c* or  $\pm\infty$ .



**FIGURE 2.51** The graph of the function in Example 3a. The graph approaches the line y = 5/3 as |x| increases.



**FIGURE 2.52** The graph of the function in Example 3b. The graph approaches the *x*-axis as |x| increases.

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

**DEFINITION** A line y = b is a **horizontal asymptote** of the graph of a function y = f(x) if either

$$\lim_{x \to \infty} f(x) = b \quad \text{or} \quad \lim_{x \to -\infty} f(x) = b.$$



# **FIGURE 2.53** The graph of the function in Example 4 has two horizontal asymptotes.



**FIGURE 2.54** The line y = 1 is a horizontal asymptote of the function graphed here (Example 5b).



**FIGURE 2.55** A curve may cross one of its asymptotes infinitely often (Example 6).



**FIGURE 2.56** The graph of the function in Example 8 has an oblique asymptote.

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



**FIGURE 2.57** One-sided infinite limits:  $\lim_{x \to 0^+} \frac{1}{x} = \infty \text{ and } \lim_{x \to 0^-} \frac{1}{x} = -\infty.$ 

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



**FIGURE 2.58** Near x = 1, the function y = 1/(x - 1) behaves the way the function y = 1/x behaves near x = 0. Its graph is the graph of y = 1/x shifted 1 unit to the right (Example 9).



**FIGURE 2.59** The graph of f(x) in Example 10 approaches infinity as  $x \rightarrow 0$ .



**FIGURE 2.60** For  $x_0 - \delta < x < x_0 + \delta$ , the graph of f(x) lies above the line y = B.

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



### DEFINITIONS

1. We say that f(x) approaches infinity as x approaches  $x_0$ , and write

$$\lim_{x\to x_0}f(x)=\infty,$$

if for every positive real number *B* there exists a corresponding  $\delta > 0$  such that for all *x* 

$$0 < |x - x_0| < \delta \qquad \Rightarrow \qquad f(x) > B.$$

2. We say that f(x) approaches minus infinity as x approaches  $x_0$ , and write

$$\lim_{x\to x_0}f(x)=-\infty,$$

if for every negative real number -B there exists a corresponding  $\delta > 0$  such that for all x

$$0 < |x - x_0| < \delta \qquad \Rightarrow \qquad f(x) < -B.$$



**FIGURE 2.62** The coordinate axes are asymptotes of both branches of the hyperbola y = 1/x.

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

**DEFINITION** A line x = a is a **vertical asymptote** of the graph of a function y = f(x) if either

$$\lim_{x \to a^+} f(x) = \pm \infty \quad \text{or} \quad \lim_{x \to a^-} f(x) = \pm \infty.$$



**FIGURE 2.63** The lines y = 1 and x = -2 are asymptotes of the curve in Example 13.



FIGURE 2.64 Graph of the function in Example 14. Notice that the curve approaches the *x*-axis from only one side. Asymptotes do not have to be two-sided.

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



**FIGURE 2.65** The graphs of sec *x* and tan *x* have infinitely many vertical asymptotes (Example 15).



**FIGURE 2.66** The graphs of f and g are (a) distinct for |x| small, and (b) nearly identical for |x| large (Example 16).