Chapter 2

Limits and Continuity

2.1

Rates of Change and Tangents to Curves

TABLE 2.1 Average speeds over short time intervals $\left[t_{0}, t_{0}+h\right]$

$$
\text { Average speed: } \frac{\Delta y}{\Delta t}=\frac{16\left(t_{0}+h\right)^{2}-16 t_{0}^{2}}{h}
$$

Length of time interval
h

1
0.1
0.01
0.001
0.0001

Average speed over interval of length \boldsymbol{h} starting at $\boldsymbol{t}_{0}=1$

$$
48
$$

33.6
32.16
32.016
32.0016

Average speed over interval of length h starting at $\boldsymbol{t}_{0}=2$

80
65.6
64.16
64.016
64.0016

DEFINITION The average rate of change of $y=f(x)$ with respect to x over the interval $\left[x_{1}, x_{2}\right]$ is

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h}, \quad h \neq 0 .
$$

FIGURE 2.1 A secant to the graph $y=f(x)$. Its slope is $\Delta y / \Delta x$, the average rate of change of f over the interval $\left[x_{1}, x_{2}\right]$.

FIGURE $2.2 L$ is tangent to the circle at P if it passes through P perpendicular to radius $O P$.

FIGURE 2.3 The tangent to the curve at P is the line through P whose slope is the limit of the secant slopes as $Q \rightarrow P$ from either side.

FIGURE 2.4 Finding the slope of the parabola $y=x^{2}$ at the point $P(2,4)$ as the limit of secant slopes (Example 3).

FIGURE 2.5 Growth of a fruit fly population in a controlled experiment. The average rate of change over 22 days is the slope $\Delta p / \Delta t$ of the secant line (Example 4).

\boldsymbol{Q}	Slope of $P Q=\Delta p / \Delta t$ (flies /day)
$(45,340)$	$\frac{340-150}{45-23} \approx 8.6$
$(40,330)$	$\frac{330-150}{40-23} \approx 10.6$
$(35,310)$	$\frac{310-150}{35-23} \approx 13.3$
$(30,265)$	$\frac{265-150}{30-23} \approx 16.4$

FIGURE 2.6 The positions and slopes of four secants through the point P on the fruit fly graph (Example 5).

2.2

Limit of a Function and Limit Laws

FIGURE 2.7 The graph of f is identical with the line $y=x+1$ except at $x=1$, where f is not defined (Example 1).

TABLE 2.2 The closer x gets to 1 , the closer $f(x)=\left(x^{2}-1\right) /(x-1)$ seems to get to 2

Values of x below and above $1 \quad f(x)=\frac{x^{2}-1}{x-1}=x+1, \quad x \neq 1$
0.9
1.9
1.1
2.1
0.99
1.01
0.999
1.001
0.999999
1.000001
1.99
2.01
1.999
2.001
1.999999
2.000001

(a) $f(x)=\frac{x^{2}-1}{x-1}$
(b) $g(x)= \begin{cases}\frac{x^{2}-1}{x-1}, & x \neq 1 \\ 1, & x=1\end{cases}$
(c) $h(x)=x+1$

FIGURE 2.8 The limits of $f(x), g(x)$, and $h(x)$ all equal 2 as x approaches 1 . However, only $h(x)$ has the same function value as its limit at $x=1$ (Example 2).

FIGURE 2.9 The functions in Example 3
have limits at all points x_{0}.

FIGURE 2.10 None of these functions has a limit as x approaches 0 (Example 4).

THEOREM 1—Limit Laws If L, M, c, and k are real numbers and

$$
\lim _{x \rightarrow c} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c} g(x)=M, \quad \text { then }
$$

1. Sum Rule:
2. Difference Rule:
3. Constant Multiple Rule:

$$
\begin{aligned}
& \lim _{x \rightarrow c}(f(x)+g(x))=L+M \\
& \lim _{x \rightarrow c}(f(x)-g(x))=L-M \\
& \lim _{x \rightarrow c}(k \cdot f(x))=k \cdot L \\
& \lim _{x \rightarrow c}(f(x) \cdot g(x))=L \cdot M \\
& \lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{M}, \quad M \neq 0
\end{aligned}
$$

4. Product Rule:
5. Quotient Rule:
6. Power Rule:

$$
\lim _{x \rightarrow c}[f(x)]^{n}=L^{n}, n \text { a positive integer }
$$

7. Root Rule:

$$
\lim _{x \rightarrow c} \sqrt[n]{f(x)}=\sqrt[n]{L}=L^{1 / n}, n \text { a positive integer }
$$

(If n is even, we assume that $\lim _{x \rightarrow c} f(x)=L>0$.)

THEOREM 2—Limits of Polynomials

If $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$, then

$$
\lim _{x \rightarrow c} P(x)=P(c)=a_{n} c^{n}+a_{n-1} c^{n-1}+\cdots+a_{0}
$$

THEOREM 3—Limits of Rational Functions

If $P(x)$ and $Q(x)$ are polynomials and $Q(c) \neq 0$, then

$$
\lim _{x \rightarrow c} \frac{P(x)}{Q(x)}=\frac{P(c)}{Q(c)} .
$$

Identifying Common Factors

It can be shown that if $Q(x)$ is a polynomial and $Q(c)=0$, then $(x-c)$ is a factor of $Q(x)$. Thus, if the numerator and denominator of a rational function of x are both zero at $x=c$, they have $(x-c)$ as a common factor.

(a)

(b)

FIGURE 2.11 The graph of $f(x)=\left(x^{2}+x-2\right) /\left(x^{2}-x\right)$ in part (a) is the same as the graph of $g(x)=(x+2) / x$ in part (b) except at $x=1$, where f is undefined. The functions have the same limit as $x \rightarrow 1$ (Example 7).

TABLE 2.3 Computer values of $f(x)=\frac{\sqrt{x^{2}+100}-10}{x^{2}}$ near $x=0$
$x \quad f(x)$
$\left.\begin{array}{ll} \pm 1 & 0.049876 \\ \pm 0.5 & 0.049969 \\ \pm 0.1 & 0.049999 \\ \pm 0.01 & 0.050000\end{array}\right\}$ approaches $0.05 ?$

FIGURE 2.12 The graph of f is sandwiched between the graphs of g and h.

THEOREM 4-The Sandwich Theorem Suppose that $g(x) \leq f(x) \leq h(x)$ for all x in some open interval containing c, except possibly at $x=c$ itself. Suppose also that

$$
\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c} h(x)=L .
$$

Then $\lim _{x \rightarrow c} f(x)=L$.

FIGURE 2.13 Any function $u(x)$ whose graph lies in the region between $y=1+\left(x^{2} / 2\right)$ and $y=1-\left(x^{2} / 4\right)$ has limit 1 as $x \rightarrow 0$ (Example 10).

FIGURE 2.14 The Sandwich Theorem confirms the limits in Example 11.

THEOREM 5 If $f(x) \leq g(x)$ for all x in some open interval containing c, except possibly at $x=c$ itself, and the limits of f and g both exist as x approaches c, then

$$
\lim _{x \rightarrow c} f(x) \leq \lim _{x \rightarrow c} g(x) .
$$

2.3

The Precise Definition of a Limit

FIGURE 2.15 Keeping x within 1 unit of $x_{0}=4$ will keep y within 2 units of $y_{0}=7$ (Example 1).

FIGURE 2.16 How should we define $\delta>0$ so that keeping x within the interval $\left(x_{0}-\delta, x_{0}+\delta\right)$ will keep $f(x)$ within the interval $\left(L-\frac{1}{10}, L+\frac{1}{10}\right)$?

DEFINITION Let $f(x)$ be defined on an open interval about x_{0}, except possibly at x_{0} itself. We say that the limit of $\boldsymbol{f}(\boldsymbol{x})$ as \boldsymbol{x} approaches \boldsymbol{x}_{0} is the number \boldsymbol{L}, and write

$$
\lim _{x \rightarrow x_{0}} f(x)=L,
$$

if, for every number $\epsilon>0$, there exists a corresponding number $\delta>0$ such that for all x,

$$
0<\left|x-x_{0}\right|<\delta \quad \Rightarrow \quad|f(x)-L|<\epsilon
$$

FIGURE 2.17 The relation of δ and ϵ in the definition of limit.

FIGURE 2.18 If $f(x)=5 x-3$, then

$$
\begin{aligned}
& 0<|x-1|<\epsilon / 5 \text { guarantees that } \\
& |f(x)-2|<\epsilon \text { (Example } 2 \text {). }
\end{aligned}
$$

FIGURE 2.19 For the function $f(x)=x$, we find that $0<\left|x-x_{0}\right|<\delta$ will guarantee $\left|f(x)-x_{0}\right|<\epsilon$ whenever $\delta \leq \epsilon$ (Example 3a).

FIGURE 2.20 For the function $f(x)=k$, we find that $|f(x)-k|<\epsilon$ for any positive δ (Example 3b).

FIGURE 2.21 An open interval of radius 3 about $x_{0}=5$ will lie inside the open interval $(2,10)$.

How to Find Algebraically a δ for a Given f, L, x_{0}, and $\epsilon>0$

The process of finding a $\delta>0$ such that for all x

$$
0<\left|x-x_{0}\right|<\delta \quad \Rightarrow \quad|f(x)-L|<\epsilon
$$

can be accomplished in two steps.

1. Solve the inequality $|f(x)-L|<\epsilon$ to find an open interval (a, b) containing x_{0} on which the inequality holds for all $x \neq x_{0}$.
2. Find a value of $\delta>0$ that places the open interval $\left(x_{0}-\delta, x_{0}+\delta\right)$ centered at x_{0} inside the interval (a, b). The inequality $|f(x)-L|<\epsilon$ will hold for all $x \neq x_{0}$ in this δ-interval.

FIGURE 2.22 The function and intervals in Example 4.

FIGURE 2.23 An interval containing
$x=2$ so that the function in Example 5
satisfies $|f(x)-4|<\epsilon$.

2.4

One-Sided Limits

FIGURE 2.24 Different right-hand and

 left-hand limits at the origin.

FIGURE 2.25 (a) Right-hand limit as x approaches c. (b) Left-hand limit as x approaches c.

FIGURE $2.26 \lim _{x \rightarrow 2^{-}} \sqrt{4-x^{2}}=0$ and
$\lim _{x \rightarrow-2^{+}} \sqrt{4-x^{2}}=0$ (Example 1).

THEOREM 6 A function $f(x)$ has a limit as x approaches c if and only if it has left-hand and right-hand limits there and these one-sided limits are equal:

$$
\lim _{x \rightarrow c} f(x)=L \quad \Leftrightarrow \quad \lim _{x \rightarrow c^{-}} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c^{+}} f(x)=L .
$$

FIGURE 2.27 Graph of the function in Example 2.

FIGURE 2.28 Intervals associated with the definition of right-hand limit.

DEFINITIONS We say that $f(x)$ has right-hand limit L at $\boldsymbol{x}_{\mathbf{0}}$, and write

$$
\lim _{x \rightarrow x_{0}^{+}} f(x)=L \quad(\text { see Figure 2.28) }
$$

if for every number $\epsilon>0$ there exists a corresponding number $\delta>0$ such that for all x

$$
x_{0}<x<x_{0}+\delta \quad \Rightarrow \quad|f(x)-L|<\epsilon
$$

We say that f has left-hand $\operatorname{limit} L$ at $\boldsymbol{x}_{\mathbf{0}}$, and write

$$
\lim _{x \rightarrow x_{0}^{-}} f(x)=L \quad \text { (see Figure 2.29) }
$$

if for every number $\epsilon>0$ there exists a corresponding number $\delta>0$ such that for all x

$$
x_{0}-\delta<x<x_{0} \quad \Rightarrow \quad|f(x)-L|<\epsilon
$$

FIGURE 2.29 Intervals associated with the definition of left-hand limit.

FIGURE $2.30 \lim _{x \rightarrow 0^{+}} \sqrt{x}=0$ in Example 3.

FIGURE 2.31 The function $y=\sin (1 / x)$ has neither a righthand nor a left-hand limit as x approaches zero (Example 4). The graph here omits values very near the y-axis.

NOT TO SCALE

FIGURE 2.32 The graph of $f(\theta)=(\sin \theta) / \theta$ suggests that the rightand left-hand limits as θ approaches 0 are both 1 .

THEOREM 7

$$
\begin{equation*}
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1 \quad(\theta \text { in radians }) \tag{1}
\end{equation*}
$$

FIGURE 2.33 The figure for the proof of
Theorem 7. By definition, $T A / O A=\tan \theta$, but $O A=1$, so $T A=\tan \theta$.

2.5

Continuity

FIGURE 2.34 Connecting plotted points by an unbroken curve from experimental data $Q_{1}, Q_{2}, Q_{3}, \ldots$ for a falling object.

FIGURE 2.35 The function is continuous on $[0,4]$ except at $x=1, x=2$, and $x=4$ (Example 1).

FIGURE 2.36 Continuity at points a, b, and c.

DEFINITION

Interior point: A function $y=f(x)$ is continuous at an interior point \boldsymbol{c} of its domain if

$$
\lim _{x \rightarrow c} f(x)=f(c) .
$$

Endpoint: A function $y=f(x)$ is continuous at a left endpoint \boldsymbol{a} or is continuous at a right endpoint \boldsymbol{b} of its domain if

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a) \quad \text { or } \quad \lim _{x \rightarrow b^{-}} f(x)=f(b), \quad \text { respectively }
$$

FIGURE 2.37 A function that is continuous at every domain point (Example 2).

FIGURE 2.38 A function that has a jump discontinuity at the origin (Example 3).

Continuity Test

A function $f(x)$ is continuous at an interior point $x=c$ of its domain if and only if it meets the following three conditions.

1. $f(c)$ exists
2. $\lim _{x \rightarrow c} f(x)$ exists
3. $\lim _{x \rightarrow c} f(x)=f(c) \quad$ (the limit equals the function value).

FIGURE 2.39 The greatest integer
function is continuous at every noninteger point. It is right-continuous, but not left-continuous, at every integer point (Example 4).

FIGURE 2.40 The function in (a) is continuous at $x=0$; the functions in (b) through (f) are not.

FIGURE 2.41 The function $y=1 / x$ is continuous at every value of x except $x=0$. It has a point of discontinuity at $x=0$ (Example 5).

THEOREM 8—Properties of Continuous Functions If the functions f and g are continuous at $x=c$, then the following combinations are continuous at $x=c$.

1. Sums:
$f+g$
2. Differences:
$f-g$
3. Constant multiples: $k \cdot f$, for any number k
4. Products:
$f \cdot g$
5. Quotients:
f / g, provided $g(c) \neq 0$
6. Powers:
7. Roots:
$f^{n}, \quad n$ a positive integer
$\sqrt[n]{f}$, provided it is defined on an open interval containing c, where n is a positive integer

FIGURE 2.42 Composites of continuous functions are continuous.

THEOREM 9—Composite of Continuous Functions If f is continuous at c and

 g is continuous at $f(c)$, then the composite $g \circ f$ is continuous at c.

FIGURE 2.43 The graph suggests that $y=\left|(x \sin x) /\left(x^{2}+2\right)\right|$ is continuous
(Example 8d).

THEOREM 10-Limits of Continuous Functions If g is continuous at the point b and $\lim _{x \rightarrow c} f(x)=b$, then

$$
\lim _{x \rightarrow c} g(f(x))=g(b)=g\left(\lim _{x \rightarrow c} f(x)\right) .
$$

(a)

(b)

FIGURE 2.44 The graph (a) of $f(x)=(\sin x) / x$ for $-\pi / 2 \leq x \leq \pi / 2$ does not include the point $(0,1)$ because the function is not defined at $x=0$. (b) We can remove the discontinuity from the graph by defining the new function $F(x)$ with $F(0)=1$ and $F(x)=f(x)$ everywhere else. Note that $F(0)=\lim _{x \rightarrow 0} f(x)$.

(a)

(b)

FIGURE 2.45 (a) The graph of $f(x)$ and (b) the graph of its continuous extension $F(x)$ (Example 10).

THEOREM 11—The Intermediate Value Theorem for Continuous Functions If f

 is a continuous function on a closed interval $[a, b]$, and if y_{0} is any value between $f(a)$ and $f(b)$, then $y_{0}=f(c)$ for some c in $[a, b]$.

FIGURE 2.46 The function
$f(x)= \begin{cases}2 x-2, & 1 \leq x<2 \\ 3, & 2 \leq x \leq 4\end{cases}$
does not take on all values between
$f(1)=0$ and $f(4)=3$; it misses all the values between 2 and 3 .

FIGURE 2.47 Zooming in on a zero of the function $f(x)=x^{3}-x-1$. The zero is near $x=1.3247$ (Example 11).

FIGURE 2.48 The curves $y=\sqrt{2 x+5}$ and $y=4-x^{2}$ have the same value at $x=c$ where $\sqrt{2 x+5}=4-x^{2}$
(Example 12).

2.6

Limits Involving Infinity; Asymptotes of Graphs

FIGURE 2.49 The graph of $y=1 / x$ approaches 0 as $x \rightarrow \infty$ or $x \rightarrow-\infty$.

DEFINITIONS

1. We say that $f(x)$ has the limit L as \boldsymbol{x} approaches infinity and write

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

if, for every number $\epsilon>0$, there exists a corresponding number M such that for all x

$$
x>M \quad \Rightarrow \quad|f(x)-L|<\epsilon .
$$

2. We say that $f(x)$ has the limit L as \boldsymbol{x} approaches minus infinity and write

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

if, for every number $\epsilon>0$, there exists a corresponding number N such that for all x

$$
x<N \quad \Rightarrow \quad|f(x)-L|<\epsilon
$$

FIGURE 2.50 The geometry behind the argument in Example 1.

THEOREM 12 All the limit laws in Theorem 1 are true when we replace $\lim _{x \rightarrow c}$ by $\lim _{x \rightarrow \infty}$ or $\lim _{x \rightarrow-\infty}$. That is, the variable x may approach a finite number c or $\pm \infty$.

FIGURE 2.51 The graph of the function in Example 3a. The graph approaches the line $y=5 / 3$ as $|x|$ increases.

FIGURE 2.52 The graph of the function in Example 3b. The graph
approaches the x-axis as $|x|$ increases.

DEFINITION A line $y=b$ is a horizontal asymptote of the graph of a function $y=f(x)$ if either

$$
\lim _{x \rightarrow \infty} f(x)=b \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=b
$$

FIGURE 2.53 The graph of the

 function in Example 4 has two horizontal asymptotes.

FIGURE 2.54 The line $y=1$ is a horizontal asymptote of the function graphed here (Example 5b).

FIGURE 2.55 A curve may cross one of its asymptotes infinitely often (Example 6).

$$
y=\frac{x^{2}-3}{2 x-4}=\frac{x}{2}+1+\frac{1}{2 x-4}
$$

FIGURE 2.56 The graph of the function in Example 8 has an oblique asymptote.

FIGURE 2.57 One-sided infinite limits:

$$
\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty \quad \text { and } \quad \lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty
$$

FIGURE 2.58 Near $x=1$, the function $y=1 /(x-1)$ behaves the way the function $y=1 / x$ behaves near $x=0$. Its graph is the graph of $y=1 / x$ shifted 1 unit to the right (Example 9).

FIGURE 2.59 The graph of $f(x)$ in
Example 10 approaches infinity as $x \rightarrow 0$.

FIGURE 2.60 For $x_{0}-\delta<x<x_{0}+\delta$, the graph of $f(x)$ lies above the line $y=B$.

FIGURE 2.61 For $x_{0}-\delta<x<x_{0}+\delta$, the graph of $f(x)$ lies below the line $y=-B$.

DEFINITIONS

1. We say that $\boldsymbol{f}(\boldsymbol{x})$ approaches infinity as \boldsymbol{x} approaches $\boldsymbol{x}_{\mathbf{0}}$, and write

$$
\lim _{x \rightarrow x_{0}} f(x)=\infty
$$

if for every positive real number B there exists a corresponding $\delta>0$ such that for all x

$$
0<\left|x-x_{0}\right|<\delta \quad \Rightarrow \quad f(x)>B
$$

2. We say that $\boldsymbol{f}(\boldsymbol{x})$ approaches minus infinity as \boldsymbol{x} approaches $\boldsymbol{x}_{\boldsymbol{0}}$, and write

$$
\lim _{x \rightarrow x_{0}} f(x)=-\infty
$$

if for every negative real number $-B$ there exists a corresponding $\delta>0$ such that for all x

$$
0<\left|x-x_{0}\right|<\delta \quad \Rightarrow \quad f(x)<-B
$$

FIGURE 2.62 The coordinate axes are asymptotes of both branches of the hyperbola $y=1 / x$.

DEFINITION A line $x=a$ is a vertical asymptote of the graph of a function $y=f(x)$ if either

$$
\lim _{x \rightarrow a^{+}} f(x)= \pm \infty \quad \text { or } \quad \lim _{x \rightarrow a^{-}} f(x)= \pm \infty
$$

FIGURE 2.63 The lines $y=1$ and
$x=-2$ are asymptotes of the curve in
Example 13.

FIGURE 2.64 Graph of the function in
Example 14. Notice that the curve approaches the x-axis from only one side. Asymptotes do not have to be two-sided.

FIGURE 2.65 The graphs of $\sec x$ and $\tan x$ have infinitely many vertical asymptotes (Example 15).

FIGURE 2.66 The graphs of f and g are (a) distinct for $|x|$ small, and (b) nearly identical for $|x|$ large (Example 16).

